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 Intended Recipients 

The WP6 workpackage entitled “Distributed Medical  Services Provision”  aims to design a 
group of  generic services that can be used in a number of related medical applications.  These 
will then be implemented in order to fulfil the neuGrid specific project requirements. The services 
will be built according to the design philosophy presented in the WP6 deliverable. This will help 
to enhance and promote their re-usability in other related applications.  

This deliverable document presents a design philosophy that the generic services will  follow, 
maps user requirements against suitable services and briefly presents a list of the services. An 
initial implementation of the services and their detailed API descriptions will be delivered in the 
year 2 deliverable.

The  WP  leaders,  technical  users  and  neuGrid  developers  are  the  intended  recipients  of  this 
document.   To a  lesser  extent,  since indirectly concerned (through the  natural  abstraction of 
Workflow/ Pipeline authoring environments such as the ones proposed in WP6), neuro-scientists 
and prospective users (e.g. Pharmaceutical companies) as well as internal and external reviewers 
of the project activities, are anticipated as potential readers of this document.



6.   The Pipeline Service

Neuro-imaging  pipelines  allow  neuroscientists  and  clinicians  to  apply  series  of  automated 
transformations and processes on brain images for decision support purposes using complex and 
nested workflows. Often these processes are very compute intensive and deal with large amounts 
of data. Grid enabled neuro-imaging pipeline services are either proprietary or under research 
and neuroscientists have to rely on command line scripts to design and execute the pipelines. 
The role of the Pipeline Service is to enable scientists to create and design workflows in a user-
friendly fashion, to grid-enable and to enact these pipelines over a Grid, and finally allow users 
to view the results of the execution. In neuGrid, the fundamental functionality of the Pipeline 
Service includes the following:

• Enable the authoring of the pipeline in a user friendly environment, using the Neuralyze 
executables as actors of the pipelines; 

• Parallelize and Grid-enable the abstract user defined pipeline for optimal execution over a 
grid; 

• Submit and enact the pipeline for execution on Grid and 
• View results of the execution as well as intermediary provenance data. 

Processing pipelines (as shown in Figure 10) are compound jobs composed of several atomic 
stages  (each  stage  being  an  algorithm applied  to  an  input  dataset  and  producing  an  output 
dataset). Each of these stages can be processed on different machines. Stages are chained (eg the 
output of one stage is used as input for the next stage) but are not necessarily in series (stages can 
be  processed  in  parallel).  Therefore,  the  Pipeline  Service  should  offer  a graphical  pipeline 
description mechanism to draw the structure of pipelines and a smart scheduler able to exploit the 
pipeline's  intrinsic  parallelism  by  distributing  processing  on  various  Grid  nodes  (data-flow 
control,  load balancing, synchronization etc).  Pipelines are of  real  interest  when processing a 
large number of input data rather than a single input. Through pipelines, the user can describe 
once  and  for  all  the  chain  of  transformations  that  each  element  of  the  input  dataset  should 
undergo.  The  pipeline  scheduler  can  process  several  elements  in  parallel  on  Grid  nodes 
(thousands  of  concurrent  input  images  are  expected  for  some  medical  applications). 
Synchronization barriers may be needed to extract statistics from processed data at some point(s) 
in  the  process  flow.  Therefore,  pipelines  should  provide  additional  services  such  as 
synchronization and provenance, logs of accomplished stages for a given input, restart from a 
failed job,  automatic resubmission of stages that failed for user-independent reasons,  etc.  The 
following diagram shows a scenario where a pipeline is created and executed on a set of images.

The design of the Pipeline Service is dictated according to the design philosophy and constrained 
by the neuGrid user requirements. All neuGrid specific user requirements as well as technical 
requirements,  evaluations  of  state  of  the  art  Grid  pipeline  services  as  well  as  design  of  the 
neuGrid Pipeline Service are detailed in the Pipeline Service design document. 

6.1 Introduction 
The  neuGrid generic medical  services layer  includes numerous components  that  facilitate the 
execution  of  a  neuro-imaging  pipeline  on  a  grid  infrastructure.  One  of  the  central  services 
enabling this is the Pipeline Service. The functionality of the Pipeline Service is mandated by 
specific requirements from WP6 and WP10.  



 

             Figure 10: A conceptual model of a neuro-imaging Pipeline  

The role of the Pipeline Service, as outlined earlier, is to enable scientists to create and design 
workflows in a user-friendly fashion, grid-enable and enact the pipeline over a grid, and finally 
allow users to view the results of the execution. The fundamental components of the  Pipeline 
Service are depicted in Figure 11. 

   

  Figure 11: Components of a Pipeline Service 

The  WP6  Design  Philosophy  mandates  that  generic  medical  neuGrid  services  should  be 
developed on SOA principles. The SOA implementation adapted for neuGrid is the Web Services 
Stack.  Hence  the  Pipeline  Service  should  be  developed as  a  web  service  supporting  a  user-
friendly pipeline authoring front end. At the back end, the Pipeline Service should seamlessly 
interoperate with various other WP6 services.

Web Services are built via standardized environments and interfaces. Because of standardized 
interfaces, there is a potential for re-usability of the services in various configurations to enable 
things  for  which  the  initial  architecture  was  not  designed  to  support.  For  example,  neuGrid 
requires a Pipeline Service, which can support NE actors and other neuro-imaging algorithms; 
however the same service can be used for any other application in any environment as long as the 
standard interfaces are used. The architecture itself is flexible, new services can be developed in 
future and embedded into the architecture with minimal or no modification to any other services, 
as they are loosely coupled.  Finally because of standardized interfaces the internals of the service 
can be developed on any platform, providing a platform independent solution. 



The purpose of this document is to present a design of the Pipeline Service. The design is guided 
by the relevant user requirements and the evaluations of the state-of-the-art  technologies. The 
document proceeds as follows: section 6.2 outlines relevant neuGrid user requirements,  which 
will govern the design of the Pipeline Service. Since a Pipeline Service can be divided into these 
constituent  parts:  Authoring  environment,  grid-enabling  and  enactment  mechanism,  the 
associated state-of-the-art projects are presented accordingly, in section 6.3, 6.4 and section 6.5 
respectively.  Section  6.6  presents  tentative  architectures  of  the  Pipeline  Service,  outlining 
advantages and disadvantages of each.  Recommendations on the architecture are presented in 
section 6.7. Section 6.8 presents the detailed end to end design of the Pipeline Service, using the 
components, which most closely match user requirements. Section 6.9 presents research issues 
and potential future work, which will be carried out as part of the Pipeline Service development.

The words pipeline and workflows are used interchangeably. A distinction in the document is 
made between task-based workflows and services-based workflows. Task based workflows are 
workflows  which  constitute  of  actors  which  are  simple  executable  processes.  Service  based 
workflows on the other hand, consist of workflows, which carry out interactions amongst web 
services to complete a workflow. 

6.2   Pipeline Service User Requirements 
 neuGrid  Pipeline  Service  has  four  primary  components:  Authoring,  workflow  planning, 
workflow enactment and results retrieval and viewing. There are specific user requirements for 
each  component  of  the  Pipeline  Service.  This  section  highlights  the  specific  relevant  user 
requirements. It is necessary for any component of the Pipeline Service to be compliant with the 
user  requirements  as  they  will  be  the  primary  means  of  judging  suitability  of  software 
components.  These  requirements  will  also  guide  the  evaluation  of  the  state-of-the-art 
technologies.

The neuGrid  user  requirements  are  drawn from consultations  with  the  potential  users  of  the 
system,  and  are  not  final.  Requirements  will  evolve  as  the  project  proceeds.  The  stated 
requirements  in  this  section  are  written  from  a  technical  standpoint  as  opposed  to  the 
requirements document, which documents requirements from a user perspective. 

Following the  separation of  roles  of  the  Pipeline  Service  in  Figure  11,  the  requirements  are 
presented in a similar fashion. 

 6.2.1. Workflow Authoring 
 Workflow authoring is one of the essential components of neuGrid Pipeline Service. Workflow 
authoring is further divided into: construction, editing, validation, annotation and visualization of 
workflows.  The  following  are  the  essential  requirements under  this  category,  as  depicted  in 
Figure 12. These requirements are derived from the neuGrid User Requirements document. Each 
category is detailed in subsequent sections. 

6.2.1.1. Construction 

Constructing pipelines is a fundamental task of the Pipeline Service. As per user requirements, 
constructing a pipeline should involve the creation and editing of workflows by using a graphical 
user interface (GUI). The GUI should support the construction of the pipeline by dragging and 
dropping  neuro-imaging  algorithms,  and  stringing  their  outputs  and  inputs  together  to  create 
workflow. 

The authoring environment should represent neuro-imaging algorithms as modules. It should be 
possible for users to query for a particular module and use it in their pipeline, by dragging it form 



the "toolbox" and dropping it in the pipeline authoring workspace. Users should be able to specify 
input and output arguments of the module in the workspace. The environment should enable the 
user to connect the output of a module to the input of a subsequent module. This connection 
should be specified in a visual manner (i.e. connect the output of a module with a line to the input 
of another). 

Validation  of  constructed  pipeline  is  also  important  during  authoring.  Before  submitting  a 
workflow to the Grid, users should be able to check the validity of the pipeline from the authoring 
environment. Validation involves checking if the output of a module is of the required format for 
an input for another module. For example, if the input of a module requires numeric parameters, 
it should not be connected to a DICOM image file input.

In order to facilitate construction of pipelines users should be allowed to string together complete 
pipelines. Users do not want to be restricted to authoring pipelines where they have to construct a 
pipeline by specifying module after module. Rather the authoring environment should be flexible 
enough to enable the connection of entire pipelines. Selecting algorithms for authoring is a related 
requirement. Users want a panel view which should list existing modules, and user should be able 
to drag and drop those modules into their workspace, at the same time, users want to be able to 
search and query for existing modules, in order to facilitate quick usage. 

6.2.1.2 Editing Workflows 

Editing  already  constructed  workflow  should  be  done  in  a  similar  fashion  as 
constructing new workflows. Editing workflows may involve operations such as changing input 
parameters to certain modules or adding new modules in the pipeline. 

 
Figure 12: Workflow authoring related requirements



6.2.1.3 Annotating Workflows 

Annotations to workflows are important to the users of neuGrid. Users want to author pipelines, 
document annotation on top of the pipelines, cluster modules together to form logical blocks, as 
well  as  add  general  comments  for  themselves  or  other  users.  All  these  facilities  should  be 
provided by the workflow authoring environment. 

6.2.1.4 Extending the authoring Environment 

neuGrid services  are  designed  to  be  extensible  and  evolvable.  The  user  workflow-authoring 
environment will cover a wide range of modules. Requirements for new modules may however 
arise as the system evolves. Hence users require an easy to use mechanism to add new modules. 
Another crucial requirements is the user-specific configurability of the environment. Users may 
want to modify the look and feel of the authoring environment to suite their use, as well as save 
workflows/pipeline  specific  settings  to  their  own  custom  user  specific 
directory/storage/repository. 

6.2.2 Workflow Optimization 
There are few user requirements  about  workflow optimization, as depicted in Figure 13. The 
requirements for pipeline optimization are derived from specific tasks from the neuGrid Project 
Proposal.  Most  of  the  requirements  are  from  WP10,  which  covers  the  gridification  and 
optimization of existing pipelines.

 
Figure 13: Planning and Optimization Requirement 

  

Because neuGrid constitutes a Grid of multiple sites, not all sites may have sufficient bandwidth 
in  order to  enable  seamless  data sharing.  Hence it  is  important  for  the  pipeline  optimization 
mechanism to take data locality into considerations, if a site is executing a pipeline and the data is 
available in the local site, the pipeline execution should stay local.

These set of requirements, depicted in Figure 14, deal with the control over execution of 
workflows, as well as the viewing of results and errors in case they arise. 



6.2.3 Workflow Execution and Results 

 

Figure 14: Workflow Execution and Results

6.2.3.1 Workflow Execution and Control 

After authoring a pipeline users want to submit it for execution. The  Pipeline Service does the 
appropriate workflow planning and optimization and starts enacting it to execute the pipeline. To 
control the enactment and execution process users want various control functionality from the 
Pipeline  Service.  Such control  functionality includes  the  ability  to  restart  the  execution  of  a 
pipeline and terminate it before completion. 

An important requirement is to be able to execute a workflow step by step, in a debug mode, and 
view intermediate data outputs and logs. Users also want monitoring information to be displayed, 
and be notified of critical events as they arise. 

The Pipeline Service should allow users to execute a workflow and process a complete set of 
images, or execute it and process a single image.

6.2.3.2 Viewing Workflow Execution 

neuGrid users have also specified specific requirements on the ability to view the output of a 
pipeline.  Users  want  up-to-date  monitoring  information,  as  well  as  seamless  access  to  the 
intermediate data produced while a pipeline is executing. Users also want notifications of critical 
events. 

6.2.3 Criteria to evaluate related projects 
The documented user requirements define the role of the neuGrid Pipeline Service. The following 
classification, as presented in Table 1, which is derived from the user requirements, will be used 
to carry out the evaluation of related state-of-the-art projects. 

6.3 Existing Pipeline Authoring and Execution Environments

This section outlines related evaluated projects.  The purpose of this section is to survey and 
explore what relevant solutions are already available and if any of the existing solutions satisfies 



the user requirements. Some of the solutions may be open source; hence if they satisfy a subset of 
the  requirements  they  can  be  selected  for  extension  in  order  to  inculcate  support  for  all 
requirements.  After  the  description  of  projects  their  evaluation  with  respect  to  the  user 
requirements is presented.

Easy Construction of Workflow

Ability to easily edit existing workflows

Annotation capabilities

Simple mechanism for adding new modules

Ability to query and select algorithms

  Optimize and Grid-Enable Algorithms

Ability to view results and associated Monitoring Data

Control Execution of a Workflow

Table 1: Evaluation criteria 

6.3.1 LONI Pipeline
LONI Pipeline [30] provides a rich interface for creating and enacting neuro-imaging 

pipelines  (see  Figure  15).  It  supports  the  creation  of  pipelines  using  popular  neuro-imaging 
algorithms  such  as  MNI  MINC,  AIR,  Brainsuite  and  others.  LONI  Pipelines'  authoring 
environment  supports  the creation of task-based workflows via a user-friendly drag and drop 
interface. It does not support staging of workflow actors, rather they must be pre-installed on the 
servers  where execution takes  place.     Enactment  of  LONI pipelines  is  carried out  on local 
servers where the executable processes are deployed.  LONI Pipeline also supports  enactment 
over DRMAA to a compliant cluster execution service such as Sun Grid Engine [33].  LONI also 
enables the users to keep track of intermediary output and the execution states of actors during 
execution. 

 
  

Figure 15: LONI Pipeline Interface 



Because LONI Pipeline is a complete neuro-imaging toolkit a detailed description of LONI is 
provided in Appendix A. Major drawbacks of LONI include: 

• LONI Pipeline is a proprietary tool. 

• The  LONI  Pipeline  Server  module,  which  is  the  primary  module  orchestrating 
pipeline execution, is limited in capabilities. 

o It does not support interoperability to Grid infrastructures; however DRMAA 
access is provided to selected cluster execution services. 

o Because basic Grid support is missing, LONI is not capable of dealing with 
large-scale data processing and analysis. 

6.3.2. Taverna 
The Taverna Workbench provides a desktop authoring environment  and enactment  engine for 
scientific workflows expressed in the Simple Conceptual Unified Flow language (SCUFL) (see 
Figure 16). Taverna provides a desktop authoring environment where workflows are designed 
and created. Because Taverna is an authoring environment for SCUFL workflows, it is restricted 
to  the  authoring  of  only  service-based  workflows.  Enactment  of  workflows  in  the  Taverna 
workbench is done via the built-in Freeflou enactment engine. Provenance data is also displayed 
which  constitutes  of  the  intermediary  results  as  well  as  invocation  made  to  constituent  web 
services and the responses returned. Taverna allows the inclusion of local widgets such as Java 
classes; beans shell  scripts and others, which allow for minor operations to be carried out on 
responses from SOAP messages before other services are invoked. 

Taverna has a rich interface. It supports extensions via plug-ins, which for example give it remote 
execution capability. It exports an API, which allows the invocation of workflows from scripts 
without any interface interaction. This makes it possible to create front ends, like AJAX based 
frontends, which enable the invocation of workflows from simple web browsers. 

  6.3.3 Kepler 
Kepler  [15] is a software application for the analysis and modelling of scientific data.  Kepler is a 
generic scientific workflow environment.  Kepler is built around on a ‘director’ concept.  Each 
director customizes the way Kepler executes a workflow, for instance if workflows are created 
with the  Synchronous  Dataflow Director  (SDF),  the  execution of the workflow will  be  done 
locally in a sequential fashion, however if the same workflow is created via the Process Network 
Director, Kepler will try to execute the workflow in a more parallel fashion. This director concept 
allows Kepler to be a generic tool that can be customized to any environment. It is possible to 
create service-based workflows (as depicted in Figure 17) as well as task-based workflows. For 
Grids, a director for Pegasus [20] has been developed. This director executes a Kepler created 
workflow on a grid infrastructure after having it grid-enabled via Pegasus (see section 6.4.2). 
Kepler is extensible; users can develop and add new directors to customize the behaviour of the 
environment.

In terms of authoring capabilities, Kepler supports drag and drop workflow construction and 
annotations. The interface is shown in Figure 17.



 
  

Figure 16: Taverna Interface 

 
  

Figure 17: Kepler 

6.3.4 Triana 
Triana [27] is a graphical workflow environment, which allows the authoring of both task based 
and  service  based  workflows.  Triana  was  developed  for  the  GEO600  gravitational  wave 
experiment.  Triana  is  primarily  used  to  analyse  terabytes  of  data  generated  in  the  GEO600 
experiment. Triana is designed to make is it possible for scientists in the project to examine this 
data in a simple and versatile way. It includes various out-of –the-box toolboxes which include 
tasks for signal-analysis toolkit, an image-manipulation toolkit, a desktop publishing toolkit, and 
others.



Triana supports both service-based workflows and task-based workflows. For enacting service-
based workflow Triana uses a Grid Application Prototype interface. For task based workflow 
enactment the Gridlab GAT API [14] is used. Both these interfaces have multiple bindings, which 
allow different service/grid middleware to be employed without amending the Triana application 
code. For service-oriented components, web services and P2PS services can currently be invoked, 
while for grid-oriented components, job submission can currently be done using GRMS, GRAM 
or the local Fork adaptor. Both the GAP Interface and the Gridlab GAT allow new bindings to be 
plugged in when they become available. 

6.3.5. Poor Man’s Pipeline 
The Poor Man’s Pipeline (PMP) is a simple PERL module based pipelining environment. It is the 
primary pipeline  tool  used for NE pipelines.  PMP offers  a programmatic  way to  construct  a 
pipeline. It provides an API through which users describe stages of the pipeline. Descriptions 
include input, output data sets as well as dependencies of pipeline actors. Parallel execution based 
on data parallelism is supported in PMP.  PMP supports the execution of pipelines over the Sun 
Grid Engine and PBS. 

6.3.6. Matching of User Requirements 
The following table evaluate all the individual workflow environments against relevant user 
requirements evaluation criteria detailed in section 6.6.2.  The super-scripted numbers are 
explained after the table. 

\User Requirements LONI 
Pipeline

Kepler Taverna Triana PMP

Easy Construction of 
Workflow

Supported Supported Supported Supported Not 
Supported1

Ability to easily edit 
existing workflows

Supported Supported Supported Supported Not 
Supported2

Annotation 
capabilities

Supported Supported Supported Supported Not 
Supported3

Simple mechanism 
for adding new 
modules

Supported Supported Supported Supported Supported

Ability to query and 
select algorithms

Supported Supported Supported Supported Not 
Supported4

Optimize and Grid-
Enable Algorithms

Not 
Supported5

Not 
Supported6

Not 
Supported7

Not 
Supported8

Not 
Supported9 

Ability to view results 
and associated 
Monitoring Data

Supported Supported Supported Supported Supported

Control Execution of 
a Workflow

Supported Supported Supported Supported Not 
Supported10

Table 2: Evaluation of state-of-the-art Workflow Projects

1.  As  stated  in  section  6.3.5,  PMP  is  a  script  based  workflow  environment.  Constructing 
workflows in PMP involves writing a PERL script, defining the operations of the workflow. 



Hence PMP does not support the GUI based workflow specification mechanism neuGrid users 
require. 

2. As stated in section 6.3.5, PMP is a script based workflow environment; hence modifying 
workflow entails the modification of the PERL script that defines the workflow. 

3. PMP does support annotations in the code of the PERL script, but not visually as required by 
neuGrid users. 

4. PMP does not have a library of modules. However users can select any algorithm they want to 
execute, because it is executed form the command line. 

5. LONI Pipeline is a cluster-oriented tool, hence it does not have Grid planning and enactment 
functionality. 

6. Kepler is a generic environment, which can be used for Grid execution. Kepler comes with 
built in support for Globus, but has been extended to other environments as well. Kepler can be 
integrated  with  Pegasus  workflow  planning  toolkit,  which  provides  data  locality  based 
scheduling (Pegasus is evaluated in section 6.4.2). 

7. Taverna is a service-oriented workflow tool. neuGrid actors are executable files; hence a task 
based workflow tool is required. Service based workflow tool requires the actors of a workflow 
to be services themselves, hence in order to adapt such a solution tasks must be wrapped into 
services.  Taverna support  workflow planning for  service  based workflows by using Moteur 
(Moteur is evaluated in section 6.4.1). 

8. Triana supports both task-based workflows and service-based workflows. However, the task 
based workflow enactment mechanism is based on GridLab GAT, which does not support the 
gLite middleware, which that is planned to be used in neuGrid. 

9. PMP does not support Grid workflow planning and enactment and is a cluster based solution. 

10.  With  PMP users  execute  pipelines  from the  command  line,  hence  in  order  to  stop  the 
execution, users must terminate the command line session, and in order to restart users must 
manually stop and start the workflow.

6.3.7. Observations on Workflow Authoring Environments 
In the light of the comparison of the workflow environments against neuGrid user requirements 
the following observations emerge. 

6.3.7.1 LONI 

LONI is  a  cluster  level  workflow execution  tool.  neuGrid  Infrastructure  is  based  on  a  Grid 
system,  hence  LONI  Pipeline  will  not  be  able  to  enact  authored  pipeline  on  the  neuGrid 
infrastructure (WP7). Hence LONI pipeline cannot be considered a part of the Pipeline Service 
environment  as  it  is  incompatible  with  the  work  in  WP7.  LONI  Pipeline  as  documented  in 
Appendix A, consists of two components: The user interface and the server module. The LONI 
Pipeline user interface fulfils most of the neuGrid user requirements, but the server module does 
not. Hence if the LONI Pipeline user interface can be decoupled from the server module, then 
LONI Pipeline interface can be used as part of the neuGrid Pipeline Service. 



6.3.7.2 Taverna 

Taverna is a service based workflow environment. The primary actors in  neuGrid pipelines are 
task executables; hence some mechanism would be required to translate tasks into services in 
order  to  author  pipelines  in  Taverna.  neuGrid  pipelines  mandate  a  task  based  workflow 
environment, as per Task 5.3 of WP5. WP5 T5.3 aims at gridifying both the LORIS database as 
well  as  ensuring  that  the  image  analysis  pipeline  software  works  transparently  over  a  Grid 
environment. Adoption of Taverna would create an incompatible solution with WP5. 

6.3.7.3 Triana 

Triana supports enactment of task based workflows, however there are some issues. Triana uses 
Gridlab  GAT to  enact  pipelines;  however  a  gLite  adaptor  for  GridLab GAT does  not  exist. 
neuGrid infrastructure is based on gLite hence tools with support for gLite should be considered. 
The dependency of Triana on GridLab GAT is incompatible with one of the primary objectives of 
WP6, which is providing a Grid middleware agnostic and an independent solution. 

6.3.7.4 PMP 

PMP is a scripting based workflow environment. It does not fulfil numerous user requirements. It 
does not support Grid level enactment, it does not support visual construction of pipelines, and no 
validation is supported. All these requirements make it unsuitable for deployment in neuGrid. 

6.3.7.5 Kepler 

Kepler supports all user interface specific neuGrid user requirements. The backend of Kepler is 
designed to be generic. Kepler has been integrated with Pegasus workflow planner and supports 
enactment  on Grid  resources.  Hence  Kepler  can  provide  an  end-to-end task  based workflow 
solution. Because all environments, except PMP support the required user interface requirements 
of neuGrid users,  the final determinant  factor is  the support for  Grid workflow planning and 
enactment. Hence the following sections explore this aspect and details related project in these 
domains. 

6.4   Pipeline Gridification 
The neuGrid infrastructure is Grid based. WP10 requires gridification of the neuGrid pipelines, 
hence planning for Grid workflow execution is an important aspect of the Pipeline Service. There 
are  several  technologies  and  approaches  which  can  be  considered,  the  following  is  a  brief 
description of some of the technologies which are under consideration to grid-enable pipelines. 

There is  no standard definition of the term “grid-enabling”,  but  usually grid enabling of grid 
workflows is interpreted as the mapping of parallel parts of a pipeline onto grid resources, for 
optimal  parallel  execution, reduction of the pipeline size and execution latency by leveraging 
replicas of data produced and consumed and finally clustering and partitioning the pipeline for 
increased efficient usage of grid resources and speedy execution of the pipeline. 

There  are  few  direct  user  requirements  for  pipeline  gridification,  however  there  are  strong 
requirements  for  pipeline  gridificaiton  in  WP10,  which  deals  with  algorithms  and  pipeline 
gridification. There are some dependant technical requirements, which govern the functionality of 
the pipeline gridification mechanism, and are highlighted in section 6.4.3. 

6.4.1. MOTEUR 
Moteur  [25] is  an  enactment  engine  for  service-based  SCUFL  workflows.  It  provides  the 
capability to parallelize web service workflows for Grids. It primarily supports gridification of 
service-based workflows by focusing on more parallel processing of SCUFL workflows. 



6.4.1.1. Parallelization in Moteur 

MOTEUR supports asynchronous calls to web services allowing it to proceed with the execution 
of a pipeline without waiting synchronously for web service invocations. MOTEUR implements 
the workflow parallelism approach on top of the latter.  Workflow parallelism depends on the 
graph  topology.  For  instance  if  we  consider  the  simple  example  presented  in  Figure 18, 
processors P2 and P3 may be executed in parallel. 

 
  

Figure 18: Simple Workflow

Another  type  of  parallelism  supported  in  Moteur  is  data  parallelism.  In  a data-intensive 
application workflow, several actors may work on the same data sets. Moteur exploits this by 
executing all concerned components concurrently. The final type of parallelism support in Moteur 
is service parallelism. In this type of parallelism, if input data sets are completely independent for 
certain actors in a workflow, all the concerned actors are executed concurrently.

Moteur, since it is designed for web service based workflows, does not support scheduling of jobs 
against resources. It is implicitly assumed that workflow actors are wrapped by web services, 
which are pre-installed and deployed on specific resources. Moteurs' grid enabling mechanisms 
hence supports parallelism based on the workflow definition only, and in order to optimally use 
this, the users must deploy all actors manually. This increases the complexity of using the system 
for end users. 

6.4.2 Pegasus 
Pegasus [20] is a workflow planner for DAG based workflows. Unlike Moteur, which optimizes 
SCUFL  workflows  and  adapts  its  parallelization  mechanism  towards  web-services  based 
workflows,  Pegasus implements  scheduling as well  as graph topology parallelization for task 
based workflows. Pegasus introduces the concept of workflow compiling. Pegasus allows users to 
define  workflows  in  a  technology  agnostic  manner,  called  an  abstract  workflow.  Pegasus 
compiles  this  abstract  workflow into  a  concrete  execution  plan  for  a  grid  infrastructure  by 
perusing the site catalogue of the Grid (which defines the sites in a Grid), the replica catalogue 
(which defines the physical location of datasets used in the workflow), and the transformation 
catalogue (which allows Pegasus to make decisions if some actors need to be moved to some sites 
prior to execution or the execution of a specific part of a workflow needs to be carried out in a 
specific site). 

   The workflow compiling process in other terms, includes finding the appropriate software and 
computational resources where the execution can take place, as well as finding copies of the data 
indicated  in  the  workflow  instance.  The  compiling  process  can  also  involve  workflow 
restructuring geared towards optimizing the overall workflow performance as well as workflow 
transformation geared towards efficient data management. The result of the compiling process is 
an efficient executable workflow. The advantage of this approach for neuGrid is that the pipeline 
components  are  executable  tasks,  optimizing  their  scheduling  against  grid  resources  and 
enhancing parallelism in the pipeline will  greatly reduce the processing time of the complete 
pipeline.  



  6.4.2.1. Grid Enabling in Pegasus 

There  are  three  primary techniques  deployed  in  Pegasus  to  grid-enable  a workflow.  Pegasus 
supports pipeline reduction through data-reuse. If for some sequence of operations in a workflow, 
some data set is generated which already exists in the Grid environment, the entire sequence of 
operations is eliminated in the workflow. This feature is very useful in re-executing the workflow 
in response to some error or modifications. Parts of the intermediary output data are discovered 
through replica location services and whole sequences of operations, which produce the existing 
data, are eliminated. This decreases the number of jobs executed in a workflow. Other types of 
grid enabling in Pegasus include topological clustering of jobs workflow and logical partitioning 
of the workflow for increased concurrent execution across sites. 

  6.4.3. Matching Technical Requirements 

There are 3 essential technical dependant requirements: 

• Tool must support execution over Grid 

There  are  numerous  pipeline  enactment  solutions  that  are  not  designed for  Grid applications 
hence  any  planner  that  is  selected  must  support  planning  for  Grid  applications.  This  is  a 
dependant requirement from WP7, which establishes a Grid infrastructure for the processing of 
the pipelines.

• Tool must support task based workflows 

This is a dependant requirement from WP5. As NE executables consist of executable 
tasks; hence pipeline authored by the users will consist of tasks based workflows. 
Hence it is important for the workflow planner to be capable of planning for task-
based workflows.

• Tool must be sufficiently adaptable in order to port it to other Grid infrastructures 

This is  a  dependant  requirement  from WP6,  which mandates  grid agnostic tools. 
Grid agnostic solutions are preferable as the generic medical services will  not be 
dependent and bound to specific Grid Middleware.

Technical Requirements Moteur Pegasus

Tool is Grid enabled Yes Yes

Tool  support  Task  based 
workflows

No Yes

Tool  is  Middleware 
agnostic

Yes1 No2

Table 3: Evaluation of Grid-Enabling Frameworks

1.     Moteur is  middleware agnostic as it  enacts service oriented workflows.  Services can be 
created in any environment, the middleware itself is irrelevant 

2.    Pegasus supports Globus and condor only. However the enactment information is stored in 
an  open  XML  based  format  hence  the  information  can  be  reused  by  client  for  workflow 
enactment on other middleware. 



6.4.4        Suitability of Grid Enabling Frameworks 

In the light of the comparison of the grid-enabling frameworks against the technical requirements 
for Grid enabling a pipeline, the following observations can be made. 

Moteur is primarily service oriented SCUFL based workflow planner and enactment engine. As it 
is  based  on  Taverna  authored  workflows,  it  is  not  suitable  for  neuGrid  pipelines,  without 
extensive SCUFL to task based workflow translation. 

Pegasus is a task based workflow planner. However it is not middleware agnostic. It is primarily 
built  for  Globus and Condor.  Hence in order to use Pegasus as part  of  the neuGrid Pipeline 
Service, it has to support gLite Grid middleware. 

6.5  Enactment 
Enactment is the final component of the Pipeline Service. Enactment deals with the actual 
execution of the user-defined workflows on Grid resources. Relevant projects are highlighted in 
this section. 

6.5.1. Moteur 
Moteur is an external enactment engine for SCUFL based workflows. It does not integrate into 
the Taverna environment rather, workflows have to be saved in Taverna and Moteur has to be 
invoked manually. Moteur parallelizes the workflow as discussed in section 6.4.1, and then enacts 
it accordingly. SCUFL based workflows are web-services based hence enactments constitute of 
exchanging SOAP messages with actor services in order to process the workflow. As previously 
stated, actor services are pre-installed and deployed on separate sites before a workflow can be 
created.  This  greatly  increases  the  complexity  of  the  system for  neuGrid,  for  the  following 
reasons: 

1. neuGrid actors are executable processes, in order to use these processes in Moteur based 
environment, they first need to be wrapped in a web service.

2. These web services must be manually deployed on multiple sites for optimal distribution.

3. When new actor services are to be made available to users in order to support new 
applications, the first two steps must be repeated for each new executable process.

Due to manual and static deployment of actors, the infrastructure looses scheduling capability, 
which could have greatly enhance performance of workflows as well as more efficient use of the 
computing resources. 

6.5.2 DAGMan 
DAGman [18] is a workflow enactment engine for Condor. DAGman unlike Moteur does not do 
any parallelization or grid-enabling. However it is often used in conjunction with Pegasus, which 
does the required grid-enabling of the pipeline. DAGman works on pipelines, which are based on 
tasks rather than web-service actors,  as is the case in Moteur. A directed acyclic graph (DAG) is 
used to represent the pipeline, which is a set of programs where the input, output, or execution of 
one or more programs is dependent on one or more other programs.  The programs are nodes 
(vertices) in the graph, and the edges (arcs) identify the dependencies. DAGman is a workflow 
enactment engine specific to Condor and is included in the standard condor distribution. 



6.5.3 GRIA 
GRIA [34] is designed to facilitate the deployment of Grid application for businesses.  GRIA has 
a Taverna plug-in making it an enactment engine for Taverna workflows. GRIA exposes two 
basic  services:  the  Job  Service  and  the  Data  Service.  The  Data  service  is  designed  to 
upload/download data from client machines, and the Job service publishes certain jobs, which are 
to be used by the users in pipelines. Using the published jobs it is possible to create workflows 
consisting of GRIA actors. Via the GRIA submission tool the workflows can be submitted and 
executed  on  Grid  resources.  For  execution  Torque/PBS  and  Condor  are  supported,  however 
pipelines are not grid enabled, hence execution does not support Grid enabling of the workflows. 

Primary limitations of GRIA are as follows:

1. GRIA does not include scheduling services. Rather a user has to develop a python script, 
which makes the scheduling decisions amongst  sites.  Eventually a single site is selected for 
workflow execution. Hence scheduling GRIA does not support fine-grained scheduling where 
certain components could execute in one site, and other components in others. 

2. Additionally, GRIA is based on a non-GSI compliant PKI infrastructure. This means that all 
sites in Grid must run services developed for and deployed on the GRIA container. 

3. Staging  of  processes  is  manual  in  GRIA.  Since  GRIA  does  not  support  fine-grained 
scheduling, the user has to manually stage executable actors to the site where the execution will 
take place.   

6.6 Architectures 
  In the light of the technologies detailed in section 6.3, 6.4 and 6.5, we present tentative Pipeline 
Service architectures. The following architectures are designed to implement both the roles of the 
Pipeline Service, defined in section 6.1 and satisfy all essential user requirements, outlined in 
section 6.2.

After  evaluation  and  review  of  existing  related  technologies  the  following  four  possible 
architectures are proposed. The advantages and disadvantages of each architecture are outlined. 

6.6.1 GRIA Based Architecture 

This  Pipeline Service integrates Taverna, GRIA as well as Pegasus, as depicted in Figure 19. 
Taverna is used as the authoring environment as well as the environment where the user views 
and retrieves results. GRIA is used to enable the enactment and gridification of the Pipeline. The 
gridification  is  carried  out  by  Pegasus.  The  Glueing  Service  (represented  as  the  Execution 
Interface(SAGA)) is used to submit the actors for final execution. 

Vanilla Taverna distribution supports only services based workflows, hence Taverna toolkit has 
the GRIA plug-in installed which allows the users to develop workflows using GRIA jobs which 
are  exported  via  the  Job  Service.  The  GRIA Jobs  can  be  individual  task  based  actors.  The 
architecture works as follows: 



 
  

Figure 19: GRIA based Architecture 

Taverna enables the creation of workflows using the GRIA actors and allows the initiation of the 
workflow execution (1). The execution of GRIA service from Taverna is managed via FreeFluo 
[22]. FreeFluo does web-service invocations against the Job Service of GRIA. These invocations 
on the Job Service are translated into a DAG via an extension to the GRIA Job Service (2). The 
DAG that represents the abstract pipeline, is passed to Pegasus (3). Pegasus returns a concrete 
execution plan, which is ready for execution on Grid resources. This plan is re-translated into 
GRIA format (4) which then can be enacted by GRIA on Grid resources via another extension 
which allows the submission of the concrete plan to a SAGA based execution interface (5). GRIA 
natively  only  support  Torque/PBS  and  Condor.  The  final  results  of  the  execution  can  be 
downloaded via the GRIA Data service at the users Taverna instance (6,7). 

The advantages of this architecture are that the development effort can concentrate on extending 
GRIA, by developing mechanisms for translation of GRIA workflows to DAG and vice versa. 
Additionally  a  mechanism needs  to  be  devised  to  enable  the  execution  of  GRIA workflows 
against the Execution interface to be devised for this project. Moreover, GRIA also comes with a 
mature security infrastructure that can be implemented in the project. 

The disadvantages include the introduction of overheads for translating GRIA workflows to DAG 
and vice versa. Additionally because GRIA is a container environment, and only two services are 
used the whole package may introduce overheads in the platform. GRIA, as mentioned in section 
6.4.3, does not support fine-grained scheduling making it unsuitable for HPC Grid environments. 
GRIAs' security PKI infrastructure is incompatible with GSI, hence limiting the interoperability 
with other Grid middleware. GRIA has manual file staging to sites where the workflow execution 
will take place. GRIAs' Taverna plug-in is also developed for an old version of Taverna, which 
does  not  have  drag  and  drop  workflow  creation  making  it  less  user  friendly  in  creating 
workflows. The Pros and Cons of the approach are highlighted in Table 4. 



Pros Cons

Easy to use drag-&-drop 
environment

No Grid support

GRIA support for Condor, PBS No native Pipeline 
Optimization, hence 
translation mechanism for 
Pegasus needs to be 
developed

Taverna integration with 
myExperiment

Overheads in translation

Mature PKI based security 
infrastructure

Data service provides stub 
for a provenance service, 
but it needs to be developed 
and customized. Hence 
support for a basic 
provenance is provided in 
the standard distribution

Table 4: Pros and Cons of the GRIA Based Architecture

6.6.2 Pegasus based Solution 

 
  

Figure 20: Pegasus based Architecture 

Since Taverna enables the creation of web service oriented workflows, and NE tools constitute of 



executable tasks another architecture can be proposed which focuses on providing a user-friendly 
environment, which allows the users to author and invoke workflows, this architecture is depicted 
in Figure 20. Kepler is a generic scientific workflow environment built without any leaning to the 
task based or service based workflow approach is suitable as the pipeline authoring interface. 
Current LORIS pipelines require a task-based approach to pipelines,  however this should not 
limit  the  potential  execution  of  service  oriented workflows  in  the  system.  Hence selecting  a 
generic environment is a suitable choice. The invoked workflows are natively stored in DAG 
format that can be directly passed to Pegasus without any need for translation (1). Pegasus grid-
enables the abstract user defined pipeline and its output is used (2) to pass to the SAGA based 
execution interface that allows the eventual execution of the pipeline over a grid. Through the 
Provenance Service users would be able to look at the results and intermediary steps as well as 
outputs of the executed pipeline. The client interface will be rich enough to allow the re-execution 
of certain parts of the pipeline.

The advantages of this architecture are that the development effort can concentrate on providing a 
rich  user  interface  rather  than  reinventing/extending  existing  middleware  mechanisms.  The 
interface can be designed form ground up to work with existing tools like Pegasus and have better 
integration  with  services  which  will  be  provided  and  developed  in  the  project  such  as  the 
Provenance  Service,  Knowledge  service  etc.  The  Pros  and  Cons  of  the  architecture  are 
highlighted in Table 5. 

Pros Cons

Easy to use Drag and Drop 
environment

Lack of Grid enactor, Pipeline 
Service enactor has to be coded

Straight forward integration with 
pipeline optimization

Pegasus is not a Grid 
middleware agnostic tool, 
however because of the Glueing 
Service this is abstracted.

Native use of task based 
workflow descriptions

Pegasus integrates PASOA 
provenance service for historical 
workflow information

Table 5: Pros and cons of the Pegasus based Solution

6.6.3 Taverna – Moteur - A-C Architecture 
This architecture, as depicted in Figure 21, consists of using a complete end-to-end web-service 
based solution. Taverna is used as the environment for authoring workflows. The workflows are 
created against web service descriptions of the LORIS executables, which are exported by the A-
C Web Service (1). In this architecture the user does not enact the pipeline from Taverna rather 
Moteur is used for grid enabling the web services based workflow before execution which is also 
done by Moteur (2). Because the A-C Web service exports the actor descriptions, enactments will 
be made against this web service, and this web service will translate invocations from Moteur into 
a DAG formatted concrete executable pipeline (3). This pipeline then can be submitted to the 
SAGA based execution interface. Because Moteur is an external enactment engine, users can not 
view results from the Taverna interface, this shortcoming would be complemented via another 
interface for viewing of the provenance data (4). 



The advantages of this architecture include the reuse of Taverna and Moteur, which are already 
well integrated for pipeline authoring and grid enabling. However in order to author a pipeline 
web  service  descriptions  need  to  be  provided  for  the  LORIS  executables  which  can  be  an 
extensive  effort.  Additionally,  the  web  service  wrappers  need  to  be  manually  deployed  and 
distributed. This severely limits scheduling capability and leads to inefficient use of computing 
resources. Additionally provenance tracking is more difficult  in this architecture. Because the 
process  execution  provenance  is  provided  by Moteur  while  the  outcome  of  the  processes  is 
provided by SAGA, both these information needs to be merged and provided to the users. The 
means to provide provenance information to users will call for another interface because Moteur 
being  an  external  enactment  engine  does  not  show  provenance  information  in  the  Taverna 
interface like FreeFluo does. The pros and cons are highlighted in Table 6.

 
  

Figure 21: Taverna-MOTEUR based Architecture 

  

Pros Cons

Mature drag and drop environment Overheads in 
translation

Good integration with pipeline 
optimization (Moteur)

External enactor 
looses visual 
enactment from 
Taverna

No staging of actors 
or data sets

Table 6: Pros and cons of the Taverna-Moteur-A-C Architecture



6.6.4 Triana based architecture 

 
  

Figure 22: Triana based Architecture 

In this architecture, as depicted in Figure 22,  the user authors pipelines in Triana. Once the user 
invokes the enactment of a pipeline, the pipeline is first grid-enabled and optimized via Pegasus. 
Then the enactment is carried out via the Gridlab GAT adaptor for the Glueing service. The 
Glueing service eventually executes the tasks on the Grid. 

Pros Cons

Mature drag and drop 
environment

Overheads in translation

Support for task based 
workflows

Glueing service Grid lab 
GAT adaptor needs to be 
developed

Overheads due to two 
levels of Grid API’s Grid 
lab GAT which is 
integrated in Triana, and 
SAGA which’s frontend 
is provided by the glueing 
service

Table 7: Pros and cons of the Triana based architecture

This proposed architecture uses Triana as the pipeline authoring environment. Since task based 



workflows can be invoked via only Gridlab GAT, hence a Gridlab GAT adaptor for the Glueing 
service needs to be developed. Apart  from this  translation mechanism needs to be developed 
where the pipeline is translated from the Triana format to Pegasus format and then translated 
back. These translation mechanisms and integration with Pegasus needs to be developed. The 
pros and cons of the architecture are highlighted in Table 7. 

6.7 Recommendations 
 In the  light  of  the  user requirements  and the  pros and cons of the  architectures,  the  second 
proposed architecture that makes use of Pegasus, a mature workflow planner and Kepler as a 
generic workflow-authoring environment  seems to fulfil  all  major  neuGrid requirements.  The 
principle factors in selecting the second architectures include: 

1. Use of a generic and mature scientific workflow authoring environment 

2. Use of a mature task based grid enabling toolkit 

3. Extent of integration between both outlined technologies (Kepler and Pegasus) 

4.    Integration of Pegasus with PASOA  [28]   (Provenance Tracking) 

5. There  is  a  clear  separation  of  concerns  in  this  architecture;  each  component  can  be 
changed without  affecting any other component  as  the project  evolves.  Kepler  is  the 
current authoring environment however this environment can be replaced with any other 
suitable workflow authoring environment. 

On the other hand principle factors which discourage adaption of Architecture 1 and 3 include: 

1. Lack of scheduling capability in both GRIA and Moteur
2. Focus on static actor workflows in Moteur (actors are pre-installed in sites)
3. Lack of interoperability of GRIA with other middleware, due to incompatible 

security infrastructures
4. Complex provenance gathering in Architecture 3
5. Manual file staging in Architecture 1, and none in Architecture 3

Hence Architecture 2 seems to provide a suitable service for  neuGrid. The various components 
under  consideration  are:  Kepler  as  the  workflow  authoring  environment,  PASOA  as  the 
mechanism for provenance gathering and Pegasus to grid-enable the workflow. The limitations of 
the mentioned software are outlined below which need to be addressed during the course of the 
project. 

6.7.1 Kepler 
Kepler provides a generic environment to create pipelines/workflows. The work on integrating 
Kepler  and Pegasus  was  done.  In  the  paper  it  is  mentioned that  the  director  was a  work in 
progress and the director is not shipped with the default distribution of Pegasus. It is unclear as to 
what is missing in the director right now, as the director becomes available limitations can be 
studied  and  solutions  explored.  Additionally  Kepler  will  be  ported  to  a  suitable  format,  for 
integration into a portal for neuGrid. Kepler will be the primary workflow authoring environment 
while, the Portal will integrate information from the several neuGrid services such as provenance 
service,  knowledge  service,  metadata  service  and  workflow  status  information,  as  well  as 
visualization for results. 



However this architecture is not bound to Kepler alone. An advantage of this architecture is that 
there  is  a  separation  of  concerns.  The  Grid  planning  and  enactment  is  handled  by  separate 
independent components. Moreover, the planning and enactment component takes workflow in a 
specific format; hence the user interface can be flexible because in any case transformations have 
to be made, as shown in Figure 23. 

 
Figure 23: Flexible Pipeline Service Architecture 

6.7.2 Pegasus 

Pegasus provides a mature framework to grid-enable abstract user defined pipelines to 
Grids. However Pegasus has support for Condor DAGMan only, and can talk to Globus 
via the Condor-G extension. The NeuGrid Pipeline Service should be middleware 
agnostic, hence requires that Pegasus should be extended to support other middleware as 
well. Because in the neuGrid architecture middleware will be shielded via the gluing 
service, Pegasus needs to be ported to work with the glueing service. 

6.8. Pipeline Service Design 
 There are three primary components in the architecture outlined in section 6.6.2: The authoring 
environment, Pegasus and the grid submission/enactment mechanism. 

As  stated  in  section  6.7.1,  the  authoring  environment  is  flexible.  The  documented  design, 
presented in this section, features two authoring environments,  Kepler and LONI. Due to the 
closed source nature of LONI Pipeline and the open source nature of Kepler, the Pipeline Service 
is  completely integrated with Kepler.  The Pipeline Service is  used as an external  service for 
LONI Pipeline. 



The components of the Pipeline Service are outlined in Figure 24. The interaction starts with the 
authoring of a pipeline, which the user wants to execute on the Grid (1). Authoring can be done in 
numerous tools, the prototype implementation presented in this section, uses Kepler and LONI 
Pipeline as the authoring environment. As previously pointed out in Figure 23, the architecture is 
flexible and any suitable authoring environment can be accommodated. 

After authoring the pipeline, the user invokes submission of the pipeline (2). In this case, several 
things  happen:  (3)  first  the  authored  pipeline,  which  is  represented  in  a  Modelling  Markup 
Language (MoML) format (in case of Kepler) or in LONI Pipeline XML (in case of LONI) is 
transformed into a simple XML based workflow format, which is passed to the Pipeline Service. 
The Pipeline Service translates the specification into a workflow object, via an API, which will be 
provided as part  of  the Pipeline Service (detailed in section 6.8.2.2).  The workflow object is 
translated into a DAX file, via the Pegasus DAX API. Pegasus is used as a workflow-planning 
tool  in  this  environment.  This  DAX file  represents  the  abstract  workflow the  user  defined. 
Pegasus  using  the  Grid  site  catalogueue,  the  transformation  catalogueue  and  the  grid  replica 
catalogueue, plans the workflow into a concrete executable workflow. The following operations 
are carried out by Pegasus on the workflow.

1.     Tasks are mapped to individual grid sites, depending on availability of task 
actors and/or study set replicas or partial workflow outputs.
2.     Portions of the workflow are mapped to specific grid resources, depending on 
the computing platforms and computing resources provided by the sites.
3.     Enhances workflow specification by including data staging actors to stage data 
between sites.
4.     Enhances workflow specification by including provenance actors for provenance 
collection.

The Pipeline Service uses this information and updates the workflow specification and enacts the 
workflow via the Pipeline Service Enactor.  Figure 25 sums up the transformations that happen to 
a workflow until its executed. This diagram will be references in the following section where a 
complete explanation of the architecture is detailed. 

  
 

Figure 24: Pipeline Service 



 
Figure 25: Transformations in Pipeline Authoring to Enactment (using Kepler) 

6.8.1 End to End architecture description 
The architecture is explained via a sample workflow that is authored by the user. The focus of this 
section is to illustrate how a workflow would be executed from an abstract description provided 
by the user to the final output of execution results. Two authoring environments are used in this 
example, LONI and Kepler. 

6.8.1.1 Workflow Authoring Environment 

Users  author  workflows  in  Kepler  and  LONI,  in  a  graphical  drag  and  drop  environment.  A 
screenshot of the Kepler environment is shown in Figure 26. Kepler will provide numerous actors 
and algorithms, which the users want to use in their workflows. Algorithms must be described in 
XML format to Kepler in order for them to be accessible in the interface. 

Figure 26: Kepler Interface



A sample description of the mincdefrag algorithm is shown in the following listing. 

Salient  features  of  the  algorithm specification include,  the  entity name,  which will  define  an 
abstract entity in the environment.  The input  “port” types,  which are input parameters to the 
algorithms and the output port,  which is the output  parameter of the algorithm.  If port types 
mismatch, Kepler does not allow the connection of the actors. XML based descriptions will be 
included  for  all  algorithms  so  that  users  can  create  workflows  with  ease.  Additionally,  the 
interface will be enhanced to allow for dynamic data set selection. This will be detailed in the 
Querying service specification. 

 
  Listing 1 

There are three primary areas in the Kepler interface. All three areas are highlighted in the Figure 
27. The area marked by a red rectangle is the authoring workspace. In this area user will drag and 
drop algorithms, define parameters and inputs and finally define the order of execution. The green 
marked  area is  the actor/algorithm search toolbox.  From this area user can search and select 
algorithm which he wants to use in the workflow. The orange marked area, represents workflow 
control  options.  The green “play”  button starts  the  execution of  the  workflow.  This  involves 
translating the Kepler workflow into a series of transformations before it can be executed. 

Figure 27: Marked Kepler Interface



Kepler uses the MoML specification to represent workflows. When the workflow is enacted it is 
first saved in a MOML format. Part of the MoML format of this workflow is shown in listing 2. 

Listing 2 

The full workflow is shown in Appendix B. 

The same workflow can be created in LONI Pipeline interface, and the same workflow is shown 
in Figure 28. 

 
  Figure 28: LONI Pipeline authored workflow

This LONI Pipeline authored workflow is stored in a XML file, an excerpt of the file is shown in 
Appendix C. The LONI Pipeline Interface is detail in Appendix A.   

6.8.1.2 Submission to the Pipeline Service Client 

The Pipeline Service client is a component integrated with the authoring environment. Because of 
the open source nature of Kepler, the Pipeline Service is integrated into Kepler which enables it 
to  support  seamless  execution of a workflow over  the Pipeline  Service.  Once a workflow is 
submitted from Kepler, the Pipeline Service client, transforms the Kepler MoML workflow into a 
simplified XML workflow and submits it to the Pipeline Service. The XML format the Pipeline 



Service uses is the pure MoML specification, which does not contain Kepler specific annotations. 
The non-annotated MoML specification was selected due to  its  simplicity.   The specification 
includes  a  basic  xml  construct  for  actors,  input  values,  output  values  and  relations  and  link 
amongst the actors. The complete simplified workflow is shown in Listing 3. 

The Pipeline Service client after translating the Kepler annotated MoML workflow into simple 
non-annotated MoML invokes the Pipeline Service and submits the workflow for enactment. 

For LONI Pipeline, because of its closed source nature, an external Pipeline Service client is used 
to transform the LONI Pipeline XML specification into the required simplified XML format used 
by the Pipeline Service. 

 
  Listing 3 

6.8.2 Pipeline Service 
The main role of the Pipeline Service is to provide seamless enactment of user defined workflows 
over a Grid. The Pipeline Service provides its functionality via a web service based interface. The 
interface of the Pipeline Service is described in section 6.8.2.1. Once a client submits a workflow 
in the simplified MoML format, the Pipeline Service converts the XML-based specification into a 
workflow object. The object-oriented workflow API is described in section 6.8.2.2. In 6.8.2.3 we 
detail  the interaction of the Pipeline Service with Pegasus and how the planned workflow is 
eventually enacted. The enactment approach is detailed in 8.2.4. 

6.8.2.1 Pipeline Service Web Service Interface 

The following documents the methods provided by the Pipeline Service. 



Non-interactive execution 
  

String run(Workflow userWorkflow, int sessionID); 
String terminate(String workflowID, int sessionID); 

Int registerSession(); 
  

Interactive Execution 

String enact(Task usertask, int sessionID);   

registerSession Method 

This method is provided to maintain state at  the Pipeline Service side. The method returns a 
unique integer number, which identifies the session for a particular client. 

run method 

The run method does several things: It first invokes Pegasus to grid-enable the workflow defined 
by the users. The grid-enabled pipeline is then enacted via the Glueing service. Due to the lack of 
appropriate meta-scheduling adaptors the enactments have to be made by the Pipeline Service. 
The run method returns a unique string, which identifies the specific workflow. In the context of 
a session, multiple workflows can be executed. 

terminate method 

The terminate method, as the name suggests terminates the execution of a workflows in a specific 
session. 

enact Method 

This method is provided for interactive execution of workflows. The previous functions do not 
provide for interactive executions, because user cannot gain feedback from the execution until the 
entire workflow has been enacted by the Pipeline Service. However when the user wants to test a 
new pipeline, and wants to study the behaviour it may be useful for the user to enact it form the 
authoring environment and study behaviour actor by actor.  

6.8.2.2 Workflow API 



 
  Listing 4 

WorkflowAPI Class 

The workflowAPI class will be used to describe workflows specified by the user in the 
workflow  authoring  environment.  An  explanation  of  the  proposed  methods  is  provided.  To 
demonstrate the use of the workflow API and the Task class a sample workflow is considered. 
Graph structure of the workflow is shown in Figure 29. 

The workflow starts with an actor, named actor1, which processes the input to the 
workflow workflow.in, the output of the workflow is fed into two further actors. Both actors 
process the output of actor1 simultaneously. The output of the workflow consists of two files 
actor2.out and actor3.out.

 
  

Figure 29: Workflow example 

addTask 

With the addTask method the user would be able to add tasks to a workflow. 



Listing 5 

In this the shown code listing numerous thing happens, the line 1-4, define the actors and the 
workflows.  In  Line  5-10  actor1 is  initialized  with  the  executable,  input,  outputs,  and  any 
arguments that need to be passed to the executable are set. The location of the logs are defined as 
well. In line10 the task is finally added to the Workflow object named workflow. 

AddPredecessor 

There are two means of specifying a dependency;  one is through the constructor or explicitly 
through this function. In the workflow shown in figure 29, both actor2 and actor3 are dependent 
on the output data from actor1. Listing 6 demonstrates how the scenario can be expressed. 

Listing 6 shows the usage of both the constructor method of adding a predecessor task and using 
the AddPredecessor method. Line 1 to 11 shows the initialization of actor2 and actor3. Line 12 
shows  how  a  predecessor  is  specified  via  the  addTask  method.  Line  13-14  show  how 
AddPredecessor method is used.  

 
  Listing 6 

Overloaded AddPredecessor method 

The AddPredecessor function used in the code listing, takes the task ID of the task and a single 
predecessor. This is suitable for our workflow, however for workflows where there are more than 
1 predecessors like shown in Figure 30.



 
  

Figure 30: Advanced Predecessor Example 

In order to cater for these scenarios an overloaded method has been provided where an array of 
predecessor tasks can be specified.

getTask, and setTask methods 

After a workflow has been defined, it is possible to amend some tasks, like specifying a new 
input file to a certain task. In this scenario, the user has to maintain a taskID.  A sample use of the 
workflow  class  in  the  scenario  is  documented  in  listing. 

Listing 7 

The Workflow class will maintain an internal directed acyclic graph data structure, where vertices 
would tasks. The setTask function will replace the t1 class with the appropriate equivalent class 
the DAG data structure. 

removeTask method 

The removeTask method removes a task from the workflow. However this may lead to workflow 
consistency issues because the predecessor tasks and the successor tasks will not be linked. In this 
case  the  developer  has  to  use  the  getTask,  setTask  functions  to  modify  properties  of  the 
predecessor and successor tasks accordingly. 

removePredecessor method 

The removePredecessor method allows the user to remove a predecessor of a workflow, may be 
used with the removeTask function in order to cleanup legacy defined dependencies. 

In the architecture shown in Figure 24 the Pipeline Service will use the workflow API to convert 
the simplified MoML into a programmatic DAG. Before we proceed with the enactment in step 5 
in figure 24, the Pipeline Service uses Pegasus to plan the workflow. 

6.8.2.3 Pegasus 

Pegasus supports numerous planning techniques for Grid workflow. In a Pegasus environment, a 
user  submits  an  application-level  description  of  the  desired  workflow in  an  abstract  format. 
Pegasus uses various data from the Grid including the site catalogue, transformation catalogue 
and the replica catalogue. The site catalogue contains information about the sites in a Grid. The 



transformation catalogue contains abstract to physical mappings for operators in a workflow and 
finally  the  replica  catalogue  is  used  locate  the  copies  of  the  operators  and  data  used  in  the 
workflow. 

The following steps are used by Pegasus to create a concrete workflow for execution 
  

1.     Firstly,  Pegasus  consults  the  site  catalogue (SC) to  find which Grid nodes  are 
available in the Grid. Site catalogue can be either a Grid information service or a text 
file  containing  descriptions  of  the  sites  available  in  the  Grid.
 
2.     Workflows are executed multiple times on a Grid. It is possible that a subset of the 
data that will be generated in the current workflow has been generated in a previous 
execution. Hence Pegasus queries the RLS service (replica catalogue) to find instances 
of data products, which will be generated in the workflow. If such instances are found, 
the tasks, which lead up to the generation of the data, are eliminated.

3.     The previous step assumes that it is more efficient to access the data then to re-
compute it. Given the workflow, a site selection is performed.  This selection can be 
done based on the available resources and their characteristics as well as the location of 
the required input data. Site selection is based on a few standard algorithms which the 
users can choose, the algorithms include: random, round-robin and min-min selection. 
These algorithms can be applied to the selection of the execution site as well  as the 
selection  of  the  data  replicas.  The  selection  algorithms  make  use  of  information 
available  in  site  catalogue,  the  transformation  catalogue  and  replica  catalogue.

4.     Pegasus provides an option to cluster jobs together in cases where a number of 
small  granularity  jobs  are  destined  for  the  same  computational  resource.  During 
clustering we consider only independent tasks, so that they can be viewed by the remote 
execution system as a single entity. These tasks also need to be destined for the same 
execution system [26].

5.     The abstract workflow contained only nodes representing computations. Since the 
workflow can be executed across multiple platforms and since data need to be staged in 
and out of the computations, Pegasus augments the workflow with tasks that explicitly 
perform data transfers.

  
After all the previous optimization, the final submit file is generated. This file can be directly 
submitted to DAGman, or through Condor-G to the Grid. 
The focus of neuGrid is to support enactment of workflows in a middleware agnostic manner. 
The Pegasus mapper is used in the Pipeline Service. The Pegasus mapper does all the planning 
and the enactment is done via the Pipeline Service enactment engine. 

The same workflow is transformed for Pegasus into a DAX. Pegasus provides a Java API for 
creating DAX workflows programmatically. In order translate the Workflow object the Pipeline 
Service  creates  into  a  format  Pegasus  can  understand,  the  Pegasus  DAX  API  is  used  to 
dynamically create workflows. The following is an example of the same workflow being created 
in the DAX API. 



   

  Listing 8 

 Listing 9 shows the DAX file that is generated, which is passed to Pegasus to plan the execution. 
The final  DAG workflow that  is  generated contains concrete execution information.  A DAG 
workflow contains multiple submit files for individual actors. Pegasus inserts staging information 
as well. Listing 10 is a specific submit file for a single actor. 



 

  Listing 9 

 As we can see, in Listing 10, Pegasus has replaced abstract actor information with concrete paths 
pointing to specific Grid executables, as well as concrete input files and output files. The site on 
which the executable will execute is given in the “Pegasus_site”.  



8.2.4 Pipeline Enactment 
The planned workflow is finally enacted, and the following is an excerpt form the enactment 
engine.  The  enactment  engine  uses  Glueing  service  SAGA  compliant  calls  to  enact  the 
workflow. 

          
Listing 11 
   
             



6.9 Research Issues 
  

6.9.1 Introduction 
e-Science workflows are broadly characterized as complex workflows which are both data 
and  compute  intensive.  E-Science  workflows  are  complex  because  they  require  a  large 
number  of  processes  and  transformations  and  have  a  large  number  of  data  dependencies 
amongst them.  neuGrid workflows, such as the CIVET (Cortical Thickness Pipeline) are e-
Science workflows. neuGrid workflows can be further categorized as data mining workflows, 
because they carry out a sequence of transformations on raw image data to retrieve valuable 
and significant information.

The enactment and execution of e-Science workflows, such as those supported in neuGrid, on 
Grid resources faces many challenges. One of the challenges is inefficient resource usage and 
long application turnaround times when executing these workflows. Potential research issues 
and  potential  solutions  are  highlighted  in  this  section.  The  focus  in  this  section  is  on 
addressing the scalability of neuGrid or other data mining workflows in Grids.

This section discusses potential research problems and solutions covering:

1. Scalability of the neuGrid workflows. 

2. Exploring the potential for integrating machine learning based methods in the planning 
of  the  workflows  to  produce  more  efficient  workflows,  reducing  time  and  increasing 
efficiency. 

3. neuGrid workflows are authored by non-technical Grid users.  Users author pipelines 
according to  application requirements.  Authoring  Grid  workflows  with  just  application 
requirements  may lead to less adaptive and inefficient  Grid workflows.  To build more 
efficient and adaptive Grid workflows, numerous design considerations need to be taken 
into account, which significantly increases the complexity of authoring Grid workflows. 
Hence the transformation and adaption of the original specification into a concrete Grid 
executable plan is a research issue. 

Figure 31 shows the outline of a typical Grid data mining application. Figure 31 can be used 
to express the cortical thickness pipeline in neuGrid, which is used to identify neurological 
diseases in patients. This workflow will be the primary application, which will be used to 
benchmark  the  approaches  and  mechanism  developed  during  the  project. 

 
  

Figure 31:  Outline of a Grid Data Mining Application 



The application proceeds as follows: a patient needs to be diagnosed; the appropriate brain 
scans  are  retrieved  and  processed  over  a  series  of  computations  called  a  pipeline  or  a 
workflow to retrieve certain parameters which include parameters such as left hemispheric 
native  thickness,  right  hemispheric  native  thickness  and  the  mid-surface  with  cortical 
thickness asymmetry map.  These parameters are classified against a control set of images 
with certain values. In data mining terms, the images in the control set represent certain points 
in a multi-dimensional space. The task of the classification algorithm, which is performed 
manually by statisticians, is to find the closest point from the unknown instance to the control 
set points. With near proximity to a certain control set point the nature of the instance can be 
identified.

It is planned in neuGrid to enable scientists to run the same process for thousands of images, 
ideally against  a  larger  control  set  to  allow for  more  accurate  diagnosis.  This  can create 
scalability problems both in terms of computational and storage capabilities. Scaling up Grid 
data mining applications is a complex research issue. Many tradeoffs need to be considered 
and many approaches can be explored and adapted. For example in the context of the neuro-
imaging pipeline,  the instance which needs to be classified can be reduced dimensionally 
through  feature  selection,  reducing  both  the  multi-dimensional  distance  calculation  and 
processing  time,  however  feature  selection  may  impact  the  accuracy  of  the  results. 
Alternatively highly granular workflows can be constructed which cater for more efficient 
parallelization at the cost of increased queue waiting times. A further possibility is to develop 
more advanced schedulers that focus on near optimal scheduling for data intensive processes 
in the pipeline at the cost of compute intensive processes or vice versa. Yet another possibility 
is to explore efficient replica management.

Many approaches can be adapted and explored, however only certain aspects,  specifically 
those which can be applied to a broader set of Grid applications will  be explored in this 
research  (detailed  in  section  6.9.2).  The  software  that  will  be  used  to  carry  out  the 
experiments  is  a  Grid  Pipeline  Service,  which  is  detailed  earlier  in  this  document.  The 
Pipeline Service detailed in this document uses state-of-the-art workflow planners, which use 
only  static  information  about  the  Grid  resources,  workflow actors  and  data  locations,  as 
shown in Figure 32. This produces a workflow, which is not inherently scalable as only static 
Grid information is used. Creating more intelligent workflow planners will be explored, as 
illustrated in Figure 33. The intelligent planner would use numerous data sources besides the 
static Grid information state of the art planners use. Historical workflow execution data, as 
well as application or workflow specific data will be combined into aggregate search space on 
which the search for an optimal workflow will be carried out. 

Figure 32: Workflow Transformation in Sate of the Art Workflow Planners 



Figure 33: Intelligent Workflow Planning

6.9.2 Towards Intelligent Workflow Planning 
  
The state of the art workflow planners, as outlined in section 6.4, try to improve upon the 
static concurrent execution of workflows, by trying to inculcate information about the Grid 
environment, like the available sites, replicas of data, clustering of granular jobs etc. But the 
information  used  by  these  tools  is  still  static.  More  dynamic  and  intelligent  workflow 
planning has been envisioned  [16]. In [23]   the workflow generation problem has been cast 
as an AI planning one in which the goals are the desired workflow outputs and the operators 
are the application components. An AI planning system is initialized with a representation of 
its current environment,  a desired goal state,  and a repository of operations it can take to 
achieve the goal state.

The  planning  system  searches  for  a  valid,  partially  ordered  set  of  operations  that  will 
transform the current state into one that satisfies the goal.  In terms of workflow planning, the 
operations  are  the  actors  in  the  workflow,  and  the  goal  state  is  the  final  result  that  is 
computed. The goal of effective workflow planning is the optimum configuration of actors 
against constraints that are enforced by dynamic Grid resources and preconditions, which are 
specified by application dependencies.  Finding the  optimum workflow description in  this 
dynamic decision space in Grids is a multi-dimensional search problem as there are a myriad 
of parameters that can affect the execution of a workflow. Machine learning approaches such 
as genetic algorithms or ensemble learning are effective approaches for negotiating multi-
dimensional search spaces, as they offer parallelized searching of a search space. Hence this 
research  will  explore  the  applicability  of  these  methods  in  scaling  grid  data  mining 
workflows.

It  is  envisioned  that  intelligent  workflow  planning  techniques  can  provide  high-quality 
solutions, partly because they can search several solutions and return the best ones found, and 
because they use heuristics that will likely guide the search to good solutions. However in 
contrast  existing  grid  data  mining  applications  frameworks  include  only  rudimentary 
workflow planning if at  all.  The authors in [23] identified the following key areas, which 
needed  to  be  addressed  in  future  Grid  workflow  management  including  more  efficient 
knowledge  capture  thereby  enhancing  usability  in  enabling  more  abstract  definitions  of 
workflows and improving robustness in terms of enhancing adaptiveness of the workflows in 
the dynamic Grid. Access rights in multi-organizational Grids was highlighted as well and 



finally  the  problem  of  workflow  scalability  was  identified.  The  authors  [23] stated  that 
primary issues with workflow scalability are both the large amounts of data they deal with 
and the scale of the workflows themselves which contribute to the problem’s complexity. In a 
Grid  environment  often  a  pool  of  workflows  is  executing  which  also  creates  complex 
scheduling problem when workflows are not optimized.

Of the five categories highlighted by the authors, we focus on the scalability and robustness 
aspects  of  Grid  workflows.  In  [21] the  authors  reiterate  similar  issues.  They  state  that 
workflow performance has two aspects: efficiency and robustness. Efficiency deals with the 
ability to quickly bind a task to a grid resource and robustness deals with the ability to handle 
exceptions  in  a  workflow without  failing  completely.  One  major  bottleneck  in  workflow 
performance, they state, is the issue of data transfer, not just input data sources but also how 
efficiently data is moved between the tasks in a workflow. This is severely impacted by the 
workflow design [24][19]. Fine-grained workflows generate large volumes of data transfers 
amongst tasks, whereas coarse-grained workflows may result in inefficient resource usage.

In  [24] it  is  stated  that  advances  in  scalability  in  workflow  execution  are  required  and 
advances  will  have  to  occur  in  multiple  dimensions.  The  identified  dimensions  include: 
efficiently describing large scale workflows, scaling the number of resources involved in a 
workflow execution and finally efficiently handling increasing number of workflow actors. 
In the light of this discussion, future work on the Pipeline Service will focus on creating more 
robust  and  flexible  approaches,  inspired  from  machine  learning,  to  create  more  flexible 
workflows.  As  a  sample  study,  we  will  explore  scaling  the  cortical  thickness 
pipeline/workflow  from the  neuGrid  project.  Future  focus  of  the  work  will  be  to  scale 
workflow pools as envisioned by researchers. 

6.9.3 Suitable Machine learning Approaches 
Numerous machine learning approaches can be explored to refine workflow specifications. 
However in order to leverage machine learning effectively, metrics need to be defined, which 
will determine the search space the machine learning algorithm will operate in. These metrics 
will represent certain characteristics of workflows. 

6.9.3.1 Metrics and Fitness Function 

Often for measuring the scalability of a data intensive workflow, the data throughput of a 
workflow is measured. Lower data throughput means a workflow keeps a large amount of 
data locally while it is processing it. This means that the total amount a workflow segment 
can  process  is  proportional  to  the  storage  capability  of  the  site  where  the  workflow  is 
executing. This leads to unscalable workflows as the scalability of such a workflow is directly 
proportional to the storage capability of the site. For scaling such workflow cleanup jobs in 
workflows  have  been  introduced  to  increase  scalability  [31]  .  Other  data  related  metrics 
include  inter-site  transfers,  large  inter-site  transfers  mean  high  communication  latency of 
processes leading to slower execution. Intra-site transfers are significant as well. Although 
intra-site communication latencies are smaller than inter-site latencies however large number 
of intra-site communication means processes spend a large time in suspended state waiting for 
data.

Compute  related  metrics  are  important  as  well.  As  users  generate  workflows  from  an 
application point of view, not all processes in the workflow are equally compute intensive; a 
common solution for this problem is to cluster granular jobs together [26]. However state of 
the art workflow planners use static information about Grids to plan workflows and cluster 
jobs. A machine learning approach will use execution feedback to determine the best possible 
clustering strategy. Job clustering is also important in increasing or decreasing granularity of 
a workflow. Increased granularity means that more Grid resources will be able to be utilized 
during  execution  however  at  the  same  time,  increase  granularity  means  more  scheduling 
delays.  This  is  a  typical  trade-off  situation,  which  may  differentiate  between  scalable 
workflow execution and inefficient execution. Such complex search problems are ideal for 



machine learning approaches. 

Thus there are two primary classes of metrics, which will be used to guide a machine learning 
approach:  data  based  and  processing  based.  However  numerous  other  metrics  can  be 
considered as well, esp. application specific metrics may be included when generating a new 
iteration  of  a  workflow.  The  fitness  function  used  to  evaluate  new workflows  will  be  a 
combination of various metrics. 

6.9.3.2 Suitable Machine Learning Approaches 

Workflow optimization is an incremental process, as has been stated before it is also a multi-
dimensional  search problem.  Machine learning approach such as evolutionary approaches, 
ensemble  learning and composite  machine  learning algorithms  are  of  significance  to  this 
problem. Genetic algorithms generate populations of candidate solutions, evaluate fitness and 
improve the next generation by selecting high-value parents, and crossing over and mutating 
them to generate a new pair of children. A workflow maybe represented as a direct acyclic 
graph. Mutations and crossover operations may be carried out via graph manipulations. A 
generation  will  be  a  set  of  workflows  with  characteristics  but  the  same  workflow  task 
sequence. Fitness will be quantified by executing a workflow. 

Fitness function itself can be dynamic. Since this is a multi-dimensional search problem. It is 
possible  that  certain  parameters  in  the  fitness  function  have  more  influence  on  the 
performance as other parameters. Hence in order to identify such features, feature selection on 
the fitness function itself can be of value. Feature construction that is creating a new feature 
from existing feature may be of value as well. For instance a single metric for data efficiency 
can  be constructed  dynamically  from disparate  data  centric  measurements.  Such  methods 
have been widely used in numerous domains [32]. 

Ensemble learning methods are based on statistics and are primarily used for classification. 
Ensemble  methods,  like  Genetic  algorithms,  are  suitable  in  traversing  complex  multi-
dimensional  search  spaces  and  use  statistical  measurements  to  produce  iterations  of  a 
candidate solution. Popular methods in Ensemble learning include bagging and boosting. In 
bagging a classifier is generated from different subsets of a data set, randomly drawn, and the 
efficiency  of  the  classification  process  is  defined  by  taking  the  accuracy  of  the  entire 
ensemble.  Similar  methods  can  be  applied  to  workflows  too.  Different  population  of 
workflows can be generated and co-evolved however using different  fitness functions for 
subsets of the population; this may lead to a highly parallel approach to discovering suitable 
fitness functions which may be used in future to refine workflows. 

As  has  been  discussed,  incremental,  generational  machine  learning  approaches  such  as 
genetic algorithms and ensemble learning are suitable for the workflow optimization problem. 
However  in  order  to  guide  these  approaches  toward  acceptable  solutions  correct  fitness 
functions  are  required.  Fitness  function  will  consist  of  numerous  metrics,  which  directly 
impact the performance of a workflow. However machine learning approach will be applied 
to  discovery  acceptable  fitness  functions.  Methods  such  as  case-based  reasoning,  feature 
selection  and  construction  as  well  as  genetic  programming  may  be  suitable.  Numerous 
machine  learning  algorithms  and  composite  machine  learning  algorithms  can  be  applied, 
however we will explore and shortlist which of the approaches are most suitable. Those will 
be deployed and tested in prototype systems. 

6.9.3 Methodology 
The experimental infrastructure used will consist of prototype algorithms encoded into the 
Pipeline Service and a physical computing infrastructure that will  be setup for the project 
studied. The cluster middleware Condor [17] will be used to create multiple pools of clusters. 
The Pipeline Service will apply the encoded mechanisms to the workflow being executed and 
the physical infrastructure will be used to execute the workflow and appropriate measurement 
for the quantitative analysis will be taken. 

The methodology is illustrated in Figure 34. 



 
Figure 34: Research Methodology

At (1), the user defines the workflow in the pipeline-authoring environment; these workflows 
will  be  primarily  neuGrid  specific  neuro-imaging  workflows.  After  the  user  defines  the 
workflow,  he  submits  it  for  execution.  Because  user  defined  workflows  are  not  directly 
executable in Grids hence it is first transformed at (2) by Pegasus into a concrete executable 
form. Pegasus uses various Grid specific data sources, shown in (3) such as the site catalogue, 
transformation catalogue and the replica catalogue to plan the workflow concretely, Pegasus 
is detail in section 6.2.2.6. In a traditional Grid workflow framework the workflow would be 
enacted in this form. However because the focus of this thesis is to explore scaling of grid 
data mining workflows using machine learning approaches, the Pegasus workflow planner 
would be replaced by an intelligent machine learning based workflow planner which would 
formulate  a  concrete  execution  plan  based  on  not  only static  Grid  information,  but  also 
relevant  dynamic Grid information,  historical  workflow execution and application specific 
data.  The machine learning approach will try to find optimal workflow according to a user-
defined  fitness  function.  Fitness  functions  will  consist  of  number  of  parameters.  Certain 
parameters which characterize a workflow need to minimized such as queue wait times, inter-
task data transfers and some others need to be maximized such as task granularity, parallelism 
etc. A discussion on possible fitness functions is presented in 2.4.1. 

After  the  machine  learning  approach  is  applied  many  iterations  of  the  workflow can  be 
generated and enacted on Grid resources. Execution logs and output data will be retrieved and 
stored in (6). Enactment, as shown in (7) in the project will be done against a Grid of Condor 
clusters. Condor is a popular cluster middleware, and numerous pools will be deployed to 
create a Grid. 

Execution specific data is dumped to a data store (9). The data store will be used to analyze 
the efficiency of the workflow. This data will also be used for analysis of the approach, and 
improvements will be made to the implemented approach in response to deficiencies in the 
algorithm. 

  



6.10 Conclusion 

The Pipeline Service is an important component of the WP6 Generic Medical Services. The 
role of the Pipeline Service is to enable authoring of neuro-imaging pipelines, gridify and plan 
the enactment of the pipeline, enact the pipeline and finally allow users to retrieve and view 
results.

The design of the service is guided by the relevant neuGrid user requirements. The design is 
also compliant with the WP6 Services Design Philosophy. Related state-of-the-art projects 
were reviewed and evaluated. The architecture that most suited the user and technical 
requirements was selected. The selected architecture has numerous features, which make it 
suitable for neuGrid. The architecture promotes a separation of interests, where the authoring 
environment is completely decoupled from the gridification and enactment engine. Numerous 
authoring environment can be integrated which include LONI Pipeline, Kepler or a web-
based authoring interface. At the other end, the design integrates seamlessly with other WP6 
services, including the Glueing and Provenance Service.

Future research issues have also been identified in this document. These issues will be 
explored during the development of the Pipeline Service. The focus of the research would be 
to make the neuGrid Pipeline Service more scalable and efficient than compared to the 
existing state-of-the-art related projects.
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